32,217 research outputs found

    Trimerization of aromatic nitriles

    Get PDF
    Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process

    Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    Get PDF
    Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described

    Catalytic trimerization of aromatic nitriles for synthesis of polyimide matrix resins

    Get PDF
    Aromatic nitriles may be trimerized at moderate temperature and pressure with p-toluenesulfonic acid as catalyst. Studies were conducted to establish the effect of the reaction temperature, pressure, time, and catalyst concentration on yield of the trimerized product. Trimerization studies were also conducted to establish the effect of substituting electron donating or withdrawing groups on benzonitrile. Preliminary results of using the catalytic trimerization approach to prepare s-triazine cross-linked polyimide/graphite fiber composites are presented

    Synthesis of ultrahigh molecular-weight poly/ethylene terrephthalate/

    Get PDF
    Solid state polymerization technology for synthesis of ultrahigh molecular weight polyethylene terephthalat

    Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte

    Get PDF
    Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods

    Inexpensive cross-linked polymeric separators made from water soluble polymers

    Get PDF
    Polyvinyl alcohol (PVA) crosslinked chemically with aldehyde reagents produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity, low zincate diffusivity, and low zinc dendrite penetration rate which make them suitable for use as alkaline battery separators. They are intrinsically low in cost and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed

    Polyvinyl alcohol cross-linked with two aldehydes

    Get PDF
    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article
    corecore